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Abstract

In this note, we propose a mapping from the spatial coordinates of an atomistic polymer chain to its ‘primitive path’ (PP), a concept being
frequently used in the framework of reptation models. For the model to be presented, the projection preserves as much structure of the
atomistic chain as appropriate to replace an atomistic chain on a prescribed (parameterized) coarse-grained level. We present an efficient
numerical method to extract a PP as well as an analytic approach to study the conformational properties of the coarse-grained chain in an
approximate fashion. The knowledge of the PP is a prerequisite to facilitate tests of mesoscopic descriptions of polymeric fluids, in particular
in the framework of nonequilibrium thermodynamics, and allows for a thorough analysis of atomistic chain configurations on a ‘relevant’

coarse-grained level. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There have been many attempts to understand the beha-
vior of atomistic model fluids by defining and investigating
conformational quantities, which aim to characterize the
atomistic system on a coarse-grained level. The most promi-
nent goal is to setup (projection) operators which act on the
space coordinates of atoms such that the resulting quantities
serve either as slow variables needed to proceed with a
separation of time scales in the corresponding Langevin
equations, or to characterize the system by structural quan-
tities, which are known to be within reach of analytical
theoretical descriptions or/and accessible by experiments.

For example, in Ref. [1] Lee and Mattice presented an
alternative way — beyond grid techniques — of looking at
the static free volume in atomistic simulations, where the
atoms are represented by hard spheres. They defined phan-
tom bubbles (empty spheres), which contact four or more
hard spheres of atoms simultaneously in three-dimensional
space and do not overlap with any atom in the structure.

* This paper was originally submitted to Computational and Theoretical
Polymer Science and received on 22 November 2000; received in revised
form on 22 February 2001; accepted on 25 February 2001. Following the
incorporation of Computational and Theoretical Polymer Science into
Polymer, this paper was consequently accepted for publication in Polymer.

* Corresponding author. Address: Department of Materials, Institute of
Polymers, ETF Zentrum, CH-8092 Zurich, Switzerland. Fax: +41-1-632-
1076.

E-mail address: mkroeger@ifp.mat.ethz.ch (M. Kroger).

Using this procedure, and by studying the morphology of the
voids, they presented a new basis to establish an alternative
relationship between simulation and experiments. Their
procedure reduces the number of degrees of freedom needed
to describe the state of the system. An attempt has been made
to characterize the degree of entanglement in linear polymeric
model systems, based on the mutual overlap of static secant
volumes for pairs of chains in Refs. [2,3]. Different measures
of geometrical entanglement information, such as algebraic
description via knot polynomials, differential geometric
approaches, path integral approaches via Abelian and non-
Abelian Chern—Simons field theory, have been extensively
discussed and compared to each other in Ref. [4].

Here, we will be concerned with two other ‘coarse-
grained’ quantities which entered the theoretical description
of the dynamics of polymers in 1978, the PP and the ‘tube’
introduced by Doi and Edwards [5,6]. There has been no
definition stated based on the atomistic coordinates of a
given model system, although the concept is widely
accepted and turned out to be useful in many aspects [7].
For example, the problem of the ‘primitive path’ (PP) statis-
tics of an entangled lattice polymer has been mapped into
the simple problem of a biased one-dimensional random
walk with reflecting barrier at one end in Refs. [8,9]. Defini-
tions for these quantities should enable the study of the
transient behavior of PPs and tubes in order to compare
analytic model predictions with the ‘true dynamics’
obtained by computer experiments. Another motivation
stems from canonical ensemble atomistic simulations for

0032-3861/02/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0032-3861(01)00422-0



478 M. Kroger et al. / Polymer 43 (2002) 477487

Fig. 1. The projection results from minimization of the energy of the
depicted mechanical system and contains a single parameter { = b/a, the
ratio of spring coefficients. Black dots: atomistic chain, squares: beads of
the PP.

linear polymers in nonequilibrium flow situations, recently
established in Ref. [10]. Besides conventional variables
entering the control (accept/reject) scheme of a Monte
Carlo simulation, a number of structural variables (based
on atomistic coordinates, such as alignment or single
conformation tensors [11] or multiple conformation tensors)
have been taken into account. While Ref. [10] set the frame-
work for designing realistic atomistic Monte Carlo simula-
tions by referring to thermodynamically admissible
macroscopic models derived from the ‘general equation
for the nonequilibrium reversible—irreversible coupling’
(GENERIC) [12,13], no definitions have been developed
for the desired sophisticated projections from atomistic to
coarse-grained variables to be used for the implementation
of the PP idea. A possible simple procedure will be outlined
in this article which also fulfils two relevant criteria for
applications: (i) it has maximum efficiency, i.e. the proce-
dure is linear in the number of particles and (ii) it allows for
an analytical treatment due to its mechanical analog. In
order to establish the ‘projection’ we will analyze and visua-
lize its features for most simple cases such as the freely
jointed atomistic chain (FJC).

2. Discrete version of the primitive path

The definition of the PP given by Doi and Edwards [14]
states that it must be the shortest path connecting the two
ends of the chain with the same topology as the chain itself
relative to the obstacles. From this definition it can be
extracted that the path must be a line following the contour
of the chain but in a softer way, avoiding all the kinks that
the chain might have. This idea is now used to define a
corresponding projection.

The desired mapping &, parameterized by a single para-
meter {, P {x{} — {x;} maps a set of i=0,1,...,N
atomistic coordinates x; of a linear discrete chain (in d
dimensions for convenience) to a new set with an equal
number of coordinates, called coarse-grained coordinates
X;, which define the coarse-grained chain or PP {x;} of the

atomistic chain. We require, that 2, = Id, i.e. for { = 0 all
information of the atomistic chains is conserved for the
coarse-grained chain. The opposite limit must reflect a
complete loss of information about the atomistic structure,
i.e the projection in the limit {— oo should give a straight
line (or point) for arbitrary atomistic configurations. In addi-
tion, for physical reasons the projection should at least
approximately conserve the center of mass, it should possess
head-tail symmetry and we require that the persistence (flex-
ibility) length of the coarse-grained chain varies monotoni-
cally with the parameter {. These conditions leave a limited
number of qualitatively different possibilities. We now
propose a projection that fulfills these criteria. It is defined
as the solution of minimization of the energy

1 N 5 éuZN—l 5
Eocgg)(xi—x% + 3 ;@m—x», (1)

for a mechanical system of two types of Hookean springs, as
depicted in Fig. 1. The first type connects adjacent beads
within the (projected) PP, the second type connects the
(projected) beads of the PP with the atomistic (original)
beads, in order to achieve 2 = Id. The coordinates of the
PP are obtained by solving the force equations dE/dx; = 0.
The result reads

(% = %)) = £y 1) =0

where we have introduced the connector between neighbors
along the chains contour I; = x; — x;,_; fori € 1,...,N, and
Iy = Iy+1 = 0in order to keep notation short. Eq. (2) can be
rewritten as x = 2’'-x°, where we have collected all coordi-
nates x; (same for x7) into a single dN-dimensional vector x =
(Xg, X1, ...,XN)T and £ is the quadratic (N + 1) X (N + 1)
projection matrix. Our model explicitly provides the inverse
projection matrix 2~

fori €0,...,N, ()

1+2 -2 0 0
& 1+28 -2 0
| & 1+27
P 0
0 -2 1+22 -7
0 0 - 1+

3

possessing a tridiagonal structure and thus, can be inverted
in O(Nl) operations, see, e.g. Ref. [15]. ‘Coarse-graining’
itself is achieved, and information about atomistic details is
virtually lost with increasing parameter . Summation over i
in Eq. (2) yields one of the desired properties of the projec-
tion, the conservation of center of mass, i.e. Zf»\':o X; =
Zf’:O x7. Other quantities, such as the contour length L =
S| are sensitive to ¢. This is most easily shown by
considering a continuous analog, but since the projection,
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Fig. 2. The contour of: (i) an atomistic chain — fluctuating path, grey
beads, black segments — and (ii) its PP — the smooth path, grey beads,
no segments visible — constructed from the atomistic chain with the same
number of beads (N = 140). The surrounding cylinders are aligned in
direction of the PP (for { = 5).

as indirectly defined already through Eq. (2) is explicitly
needed to devise an efficient algorithm, we will keep on
discussing the discrete projection first. A PP resulting
from the described operation is depicted in Fig. 2. The
parameter { of the projection may be interpreted in various
ways. As will be seen below, ¢ controls the Kuhn’s
length bg (twice the persistence length [;), contour length
L and ‘width’ of the PP, or ‘tube diameter’. If the relevant
model parameter should be the number of Kuhn’s
elements Z (or ‘entanglements’ with respect to the picture
of Doi and Edwards), we have Z = Nb(z)/b%(, where b(z)
denotes the mean squared atomistic bond length. Also
the contour length L or tube diameter may be regarded
as alternative system parameters, depending on anticipated
interpretation.

The speed required for an inversion of 2" in Eq. (3) is,
e.g. for N < 10°, some orders of magnitude faster than a
typical Monte Carlo step — even when assumed to scale
with O(N®) — and thus it turns out to be unproblematic to
perform the projection often enough in order to analyze
dynamical properties, or correlations. It is evident, that the
speed of inversion is unaltered if we introduce functions { =
{(i), but it will become a time consuming operation if we
consider non-Hookean springs or additional forces such as a
Maxwell Daemon pulling at the ends of the PP (in order to
preserve a certain tension in the primitive chain; see also
discussion in Section 6.2).

For the sake of completeness, we also note the resulting
explicit connection between segment vectors before and

after the transformation, viz.
—1,0
;i =A;'L, 4)

with Ay = (1 +20°)8; — (841 + 8;j-1) (A has dimen-
sion N X N) as well as the expression for the N + 1 vectors
Q; connected with the a-springs in Fig. 1, which we should
call ‘tube vectors’ in the following:

N
Q =x—x' =) Dy, 5)
=1

where D;; = {2(6,-j — 0;j+1) (D has dimension (N + 1) X N).

3. Continuous version of the PP

In order to derive some properties of the stated projection
2, in particular the effect of ¢ on the persistence length of
the coarse-grained chain, we reformulate the projection in
terms of a differential equation plus boundary conditions.
Both descriptions become equivalent in the long chain limit
(exactly, for constant |I| for all i). We let the discrete chain
approximate a continuous line with fixed contour length L
by labeling the discrete chain with a continuous dimension-
less label s = [0, 1]; neighboring atoms at contour position
s; = iAs are now separated by As = 1/N. With these defini-
tions the mechanical energy (1) reads in the continuous limit

1
Eijmn—fmf+@ﬂMﬁm ©)

where one notices, that the quantity . = {/N turns out to
determine the overall shape of the continuous chain and is
therefore to be regarded as the intrinsic parameter of the
projection, i.e. if we double the number of beads on a
given atomistic contour, we will obtain a comparable
shape of the coarse-grained chain if we keep ., but not £,
fixed. The functional (6) is minimized by solving the corre-
sponding Euler—Lagrange differential equation

2x"(s) — X(s) = —x°(s). (7)

Two boundary conditions can be extracted from the
continuous limit of Eq. (2): x(0) — x°(0) — Ng’gx’(O) =0
and x(1) — x°(1) + NZx'(1) = 0. Also, we notice that
conservation of center of mass implies, by integrating Eq.
(7) over contour position: g’g[x'(l) - x'(0)] = f(l) x(s) —
x°(s) ds o< X, — Xo, = 0. The latter condition serves to
obtain slightly modified boundary conditions, but both
versions only differ in a correction of order 1/N, which is
irrelevant for long chains. The projection has the following
invariant features x(0) + x(1) = x°(0) + x°(1), 1(1) = 1(0),
(x) =(x°), and (Q1) =0, where the latter relationship
representing a vanishing torque follows by multiplication
of Eq. (7) with 1 and subsequent integration. In the above
(f) abbreviates the average (f)= [f(s)ds = UNYf.
According to the boundary conditions conservation of the
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end-to-end vector R = R’ requires {, = 0, and for an
atomistic rod, e.g. we have R -R= 2N§§1(0).

3.1. Analytic solution

Coordinates of the PP. In order to solve Eq. (7) subjected
to the above boundary conditions we make use of the
appropriate Green’s function and thus obtain the continuous
form of the projection operator £ with Xx(s)=
I P s, sHx°(s") ds’. With this projection operator at hand,
we also have access to an approximate explicit form of the
projection matrix. The solution for the PP reads

_ Gy
R AeNT)

where F[x°] = x°(1) + j(l)xo(t)G](l — 1) dt. The following
abbreviation turned out to be useful:

FIx°] + J (DGt — 5)dr + x°(0),  (8)
0

Gy = o1+ 07 e — (1 - 97 e, ©)
24,

again, with { = N{_ as before. Note that G;(0) = N and
Gy(2) = —Gy(—2) = sinh(Z/{) . ' For the semiflexible
case with > 1 one has: G,(z) = §2G0(z) and G(2) =
N cosh(z/{.) whereas in the stiff limit {. > 1 the expres-
sions further simplify due to: Gy(z) = z{, 2 Gi(z) =N,
and G,(z) = N’z

As will be shown below, in practice, considering the
analytic result for the semiflexible limit { > 1 will be suffi-
cient in many cases. For that reason we write the result down
explicitly, this time for the projector:

P  __ cosh(s/{.) o 1—4s'
Ps,s') = —§ S ) [5(1 s)+N cosh( z )]
— Qs — s’)gicsinh( al ;Cs ) (10)

This expression shows that the projection can be rewritten
into products which either depend on s or s’, and that the
projection matrix can be also decomposed into a sum of
matrix multiplications (which would not serve to enhance
the speed of an algorithm).

End-to-end vector. For the end-to-end vector of the PP
R =x(1) — x(0) = f(l) 1(s) ds we obtain from Eq. (8)

1
R = Jo (Go(®) + a[G(t) + 8()Dx°(1 — 1) dr, (11)

with @ = [G(1) — G1(0)]/G,(1). For the case of the rods,
a = 0, and the PP shrinks into a single point for { — oo (the
center of mass of the atomistic chain), due to R =
&2 [0t — DX°(r) dr o< £, 2 for large ..
Tangent vectors of the PP. The tangent vectors 1I(s) of
the PP at contour position s satisfy the differential equation
21" —1= —1°, with two boundary conditions (1 +
OUO)=1°(1) = NZVA)  and (1 + A1) =1°(1) —
N gﬁl’ (1). These equations are obtained from the discrete

version cf. Eq. (2), rewritten as (1 + 2(2)11- =1+ {2(li+l +
I,_1). Using once more the appropriate Green’s function, the
solution of the differential equation for I’, subjected to the
above boundary conditions reads

I(s) = J’S sinh(t — s/,) 10

; () dt + a_(s — DI°©)as (HI°(1)
0 c

ar (1o
+ J 'O _(r — 1) ds, (12)
L Jo

C

or alternatively

1
I(s) = J Z (s5,sN°(s") ds’, (13)
0

with the following kernel

C C

P (s,5") = Os — s’)%sinh( al g al ) +a_(s — Ddy,

I (s'—1
— @i ()8, + oq(s)%. (14)

Here, @(x) denotes the Heaviside step function O(x) = 1
for x = 0 and O(x) = 0 otherwise, and the abbreviations

.(t) = (1 + &) sinh(t/{.) * { cosh(t/Z,),

oI, (15)

==

W= (1 + 52 _ é:/)2 efllg“c _(1 + §2 + §)2 el/gC

have been used. With Eq. (14) at hand, we can most easily
derive expressions for the average bond length, the persis-
tence length, and correlations in general.

Correlations. One usually does not have access to the
atomistic conformation x°(s), but information about corre-
lations of tangent vectors. From Egs. (13) and (14) we
obtain for the tangent—tangent correlation matrix

C(As) = J'l(s)l(s + As) ds

1-5
= <$§(s, s’)J L (s + As,s’ + 2C%2) dz>,

— S/

(16)

where () denotes a twofold integration over s and s’, and the
tangent—tangent correlation on the atomistic scale is
expressed by 'z = J' 1°()I°(s + 7) ds, whenever end
effects can be neglected, as for the FIC, which is completely
characterized through (dimension d)

CO(As) = (R )&(As)I/d. (17)

Contour length of the PP. For example, the average
squared bond length b, vs. contour position for FJC is
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Fig. 3. Displacement of selected points on the two-dimensional sample
contour (21) due to the continuous mapping procedure for chosen mapping
parameter ¢, = 0.1 (and N — 00).

obtained via
b, = U(s)1(s)) = JJE?(S, 1) dt ds(R"z), (18)

with the following kernel

Li(s,1) = ?[ %sinh2< ! 2 S) - sinh(gi)a_(s -1

+ ;Csinh(tg_cs)r(f — Day(s)

+a_(s— Day()(—1) — ai(s)F(O)]

2
X Ot — 5) + “22(” rx@—1. (19)

C

In the semiflexible case { > 1 the integral can be expli-
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Fig. 4. Coarse-graining as for Fig. 3 for different mapping parameters ..
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Fig. 5. Comparison between discrete (several N) and continuous mapping
(N— o) for ¢, = 0.1, again for the atomistic chain defined by Eq. (21).
citly evaluated to yield

by _ [cosh(2/g,) + sinh(2/¢)][¢, sinh(2/¢.) — 21
(R 2(e¥% — 1) ]2

)

(20)

which is a decreasing function in £, otherwise sine integrals
remain. Similarly, the contour length or persistence lengths
can be evaluated. The latter quantity, e.g. by comparing the
squared end-to-end distance with the expression by Flory or
Kratky [16,17].

4. An illustrative example

In this section we apply both procedures, the continuous
and the discrete one to a particular conformation in order to
illustrate that the continuous solution indeed represents the
limit of the discrete one for an infinite number of beads. For
this purpose let us regard the following two-dimensional
path, parameterized by s

x(s) =s, y(s)=s sin5(277s). 21

Fig. 3 demonstrates how the atomistic (‘original’) contin-
uous chain, expressed by Eq. (21), displaces according to
the continuous mapping to yield the continuous PP (here for
{. = 0.1). The effect of the mapping parameter {. on the
shape of the PP for the fixed atomistic contour (recovered
for . = 0) is depicted in Fig. 4. It is visible that the para-
meter £, controls the stiffness of the coarse grained PP.

Now we use the same continuous atomistic curve to build
a series of discrete chains, by selecting a prescribed number
N + 1 of points along the path and taking them equidistant
in terms of the contour position s. In Fig. 5 we compare the
discrete coarse graining to the continuous one with the same
value for . (and therefore different values for (), to visua-
lize the effect of the chosen number of beads. For this simple
curve, we see that the discrete mapping tends to the contin-
uous one as the number of beads increases, as expected.
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Fig. 6. Effect of N on the boundary condition, and thus the solution for the
continuous PP, for {. = 0.2.

Since N appears in the boundary condition for the contin-
uous curve, we wish to clarify how the continuous solution
is affected by a different choice of N. Fig. 6 therefore
demonstrates how the continuous solution converges with
increasing value N for fixed ..

5. Properties of the discrete PP

Starting from Egs. (4) and (5) for the discrete PP, we can
evaluate and analyze expressions for a number of descrip-
tors. The end-to-end vector is defined as R = vazl I;, and
the end-to-end distance then reads

R =>4 => @, (22)
ij ij
From Eq. (4) we obtain
1T =A@ H)AT (23)
600

N

Fig. 7. Effect of £ on the squared end-to-end distance (R?) of the FIC-PP.
Here and in the following figures quantities (such as R’ Ly, Q) are made
dimensionless for convenience, by the (unit) bond length b of the atomistic
chain.
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Fig. 8. Effect of { on the characteristic ratio of the FJC-PP.

where the dyadic product of the vectors 1° and I° is a tensor
of second order whose elements are the scalar products I717.
We have also made use of the symmetry of the matrix A,
and therefore of A~!. From (R?), together with

NPy = (A7);(58), (24)
i.j

We can evaluate the characteristic ratio C, = (R®YN(P).

For FIC, characterized by (1°1° ) = I’1, the resulting end-
to-end distance is (R*) = I D (Afz),-j, and the character-
istic ratio C, of the FJC-PP (PP obtained for the FJC)
expresses as

DA,
7

Cn i — —
Tr[A™7]

(25)

It is not possible to evaluate A~' or A2 analytically for
all £, {., but we evaluate these expressions numerically.
From Fig. 7 it is then visible that the value for { (at given
N) does not affect much the FJC-PP squared end to end
distance, the value still scales with N. Fig. 8 shows the effect
of { on C, for different chain lengths N. The behavior of this
plot can be generalized for almost all the geometrical
descriptors to be discussed in this section. Each descriptor
rises up until it reaches a well defined plateau for very long
chains, and thus we can create plots for the extracted limit-
ing values of the different quantities against {. In Figs. 9 and
10 we see that C, scales almost linearly with the parameter
{, using Eq. (25) for FIC, using the corresponding expres-
sion for the freely rotating chain, and using a set of config-
urations of linear long chains well relaxed by end-bridging
Monte Carlo simulation [18]. From Figs. 7 and 10 we can
extract the following information. The squared end-to-end
distance is proportional to N and essentially insensitive to
the value for . The characteristic ratio C, increases linearly
with . This behavior is expected for the proper projection,
with increasing { it makes the PP stiffer but approximately
maintains the end-to-end distance, while kinks are steadily
removed from the PP.

The squared radius of gyration s* of a chain molecule [16]
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Fig. 9. Characteristic ratio C, for FJC-PP as function of {.

is defined as s* = DX — Xj]Z/Nz. Proceeding as in the
previous case, we finally get

(s = N2 > Z (Il,,), (26)

i=j km=i

that, in the case of the FIC model, reduces to

(s = N2 Z Z (A ). @7

i=j km=i

We can further apply the definition given by Porod [19]
for the persistence length [, though it is intended for being
used only with bonds far from both ends of the chain. The
definition reads

131 &
I, = N D T > a1, (28)
=1 "t j=1
In order to average this expression, we make the follow-
200 i ;
—TN=100 ,/
— N=500 e
-+ N=1000
150 — N=5000 s
C, 100 / ,/
P
50 /:{;/
/ 4

4

Fig. 10. Characteristic ratio C, for FJC-PP as function of { as for the
previous figure, but for a larger {-range.
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Fig. 11. Persistence length [, (Eq. (28)) vs. { for the FIC-PP.
ing approximation {/;) = /{/?), and finally obtain

(Ip) = N<I)Z<l (29)

i=j

which, for the FJC case simplifies to

1) = A7Y), 30
(1) = FTY[A ]; (30)

Figs. 11 and 12 demonstrate that the relation between /,
and ¢ is sublinear, for { — 0 we recover the persistence
length of the atomistic chain. We do not show the corre-
sponding plot here but we convinced ourself that C, =
21,1y — 1 holds, with () = 1/N ZI]V [;. Notice, that due to
the coarse graining the bond length distribution is not
uniform along the PP, such that the average bond length
and the average squared bond length (involved in the calcu-
lation of the characteristic ratio) of the PP depend differently
on the parameter of the projection. Thus C,and [, scale
differently with {. We may further apply the definition of
a ‘step length’ a given by Doi and Edwards [14], ((R(s, ) —
|s — 5’| > a. We can approximate

TR0 A
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«v-s N=1000 //‘_/
-— N=2000 //r L
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4 <~
td f— i
/"://:" AN
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(/‘.
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4

Fig. 12. Persistence length [, extracted according to expression (28) vs. {
in double logarithmic representation for the FJC-PP.
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Fig. 13. Average contour length L = (3" |I;) of FIC-PP chains vs. { for N =
50, 100, 200 beads (10° chains samples). Obviously, the average bond
length L/N is quite insensitive to N (compare also with subsequent figures).

the step length of the coarse grained chain by a = (R*)/(L),
where (L) = N(I;) (see also Fig. 13). The explicit expression
for the step length in terms of A and the tangent—tangent
correlation of the atomistic chain reads

Z g
a= o , 31

\/NZ A1
ij

that, in the particular case of a FJC, reduces to

lZ A7)
a= - (32)

JNTHA 2]

Finally, we calculate the mean squared ‘tube radius’
based on the tube vectors Q; defined in Eq. (5). In
terms of A and the atomistic tangent—tangent correlation,

<|QI> 1

0.5

Fig. 14. Effect of { on the average tube radius (|Q|) of FIC-PP.

T T

<Q’> [

0.1

00p;

¢

Fig. 15. Average squared tube radius (Q?) vs. ¢ for the FIC-PP in double
logarithmic representation.

it reads

o~ AT'DTDATYH,
=337 @

i

1), (33)

and, once more, for the particular case of the FJC-PP

2

"= Tr[A~'D"D-A™"]. (34)

N+1

For a quantitative analysis see Figs. 14—17. The tube
radius, for flexible and semiflexible PPs is insensitive to
the value for N, and reaches a limit which of course depends
on the chain length in the stiff limit, because for { — oo, the
tube radius becomes equivalent to the radius of gyration of
the atomistic chain.

Finally, our approach also allows to extract a tube volume
V and to relate it to the parameter of the projection ¢, or
quantities related to {, such as tube diameter or the persis-
tence length. In first approximation the tube volume may be
expressed as the product between tube cross-section Eq. (34)

= N=100
-+++ N=500 /,{
—- N=1000 Pt
10 — N=5000 -
/(
o
&
FT o LrErL
a /':’ i N
.3 N
7 »
1
1 10
¢

Fig. 16. Step length a of the PP vs. parameter of the projection ¢ for the
FIC-PP. In the long chain limit we have a oc \/Zh,.
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0.01 - N=200
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Fig. 17. Squared ‘tube radius’ Q” vs. the persistence length L.

and length of the PP, i.e. V oc LQ?. From the investigations
above we know that we have for long chains Q2 oc {bg (see
Fig. 18), and that the step length increases with ¢, viz.
a o< {*by, with x = 1/2. Together with the relationship La =
Nb(% we obtain an expression for the tube volume: V oc
Nbgg“l*x. Since x # 1, also the tube volume should depend
on the parameter of the projection, and because the persis-
tence length has been shown to scale with { as a does, the
volume of our PP can be also expressed as: V oc Nbélp. The
shrinking of the PP upon increasing { therefore compen-
sates for the increase of tube cross section, such that the
growth of tube volume is in fact moderate.

6. Variations of the model

As can be seen in Fig. 4, the proposed projection is only
weakly influenced by the exact position of the ends of the
atomistic chain. The PP tends to shrink as the parameter {

15

10 SR
/”
2
/"
<Q’> 7 S -
,./" -
5 i
-— N=50
-~ N=100
— N=1000
0
0 10 20 30 40 50
4

Fig. 18. Squared tube radius Q* vs. ¢ for the FIC-PP. For infinitely long
chains a linear relationship between squared tube diameter 2Q and { is
obtained, viz. ((20)*) = ¢b? where by is the atomistic bond length. There-
fore the parameter ¢, a ratio between spring coefficients in the microscopic
picture, shows up as a dimensionless tube cross section.
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Fig. 19. Same situation as in Fig. 4 but with the ends fixed. The length of the
chain is N = 40.

increases and its ends eventually separate more and more
from the corresponding ends of the atomistic chain.
Although the very end beads of an atomistic chain should
not be thought to build up an entanglement segment, our
projection may be considered as an ‘inconvenient’ represen-
tation of a PP, beyond the above discussion of tube volume.
To prevent the chain from shrinking upon increasing the
parameter {, two alternative approaches will be shortly
discussed.

6.1. Chain ends fixed

The first and simplest way to prevent the ends of the PP
from separating too much from the ends of the atomistic
chain is — of course — to fix them. If the projected
beads at the ends of the PP are kept tethered at the end
beads of the original atomistic chain, the projection matrix
has also a tridiagonal structure, very similar to Eq. (3). It can
still be inverted in O(N 1) operations and the efficience of the
method is not diminished.

In Fig. 19 it is shown how the mapping is affected by this
modification: the structure of the PP is determined by the
fluctuating location of the atomistic chain ends. This is in
fact against the spirit of the coarse graining. A structure
defined in an upper level of description should not be so
much determined by information from a lower level, and we
do not need to consider this approach further.

6.2. Maxwell Daemon

The second possibility to circumvent shrinking is to intro-
duce a Maxwell daemon acting at both ends of the projected
chain. The daemon induces tension along the PP and tends
to keep its ends closer to those of the original chain. It has
been implemented as a force of constant strength (depend-
ing of the temperature, reflecting entropic spring effects)
having the direction of the last bond of the PP, pulling out
the ends. The expressions for the forces at both ends are
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Fig. 20. Same situation as in Fig. 4, for the case {. = 0.5, using a Maxwel-
lian Daemon. The length of the chain is N = 40. The ends of the chains are
represented by symbols.

then

kBT Xy — X
0= — T _ -1 FN=
a |xo—x;

kBT Xy — Xy-—1

N

. (35

a |XN — XN-1

at ends 0 and N, respectively. The daemon cannot be
derived from a potential and it leads to a non-linear
system of equations to be solved (numerically) in
order to perform the new projection.

The equations for beads 0 and N now read

Xo—x0) — &l — Fy =0,
(36)
(xy —x3) — Lly — Fy =0.

The expressions for all remaining beads do not change,
cf. Eq. (2). To solve this system of equations, the Newton—
Raphson method has been used, and the modification has
been tested on the example of Fig. 4, for the case of {, =
0.5. In Fig. 20 it is shown, for different values of the para-
meter kg7/a, how this modification can vary the result of the
mapping. This parameter may be also selfconsistently deter-
mined such that the end-to-end distance of the PP equals the
one of the atomistic chain. Using the Maxwell daemon,
chain end effects are less pronounced than for the ‘fixed
ends’ method. A drawback is that the speed of the algorithm
is decreased. The average number of iterations that need to
be done in the Newton—Raphson method for solving the
non-linear system of equations is independent of the para-
meter {, but it increases linearly with the value of the para-
meter kgT/a. The method requires, beside ¢, the step length
a, which in turn depends on {. This appears to be incon-
venient in defining a PP, but may serve to interpret an effect
of temperature on the properties of the PP.

7. Conclusions and outlook

In this note we presented and motivated a possible

definition for the PP of an ‘atomistic’ (discrete or continu-
ous) linear polymer chain, based on the space coordinates of
that atomistic chain, and parameterized by a single parameter
().

The original idea of Doi and Edwards introduces the PP
using two interrelated quantitites, the length L and the step
length a of the PP. One of them is a priori unknown. In our
approach the ratio of spring coefficients ¢ is the only para-
meter of the microscopically founded PP, from which the
length L of the PP, and the step length a =Nb(2)/L are
obtained as function of { (and chain length N). Moreover,
our approach allows to interpret the step length a, e.g. in
terms of the persistence length of the PP. Due to the micro-
scopic definition of the PP only the long chain limit provides
universal results to be compared with the setup of the origi-
nal PP concept. It therefore allows to interpret ‘anomalies’
for short chains, or the effect of temperature through a
Maxwell daemon, as outlined above.

For the case of atomistic freely jointed chain (FJIC) we
demonstrated, that our parameter { scales linearly with the
characteristic ratio of the PP, and we investigated the effect
of { on several conformational properties such as the
contour length, or tube diameter of the PP. It turned out
that all investigated quantities depend monotonically (and
nonlinearly) on , and thus serve to characterize the projec-
tion as well. For example, stiffening of the PP comes
together with a shrinking of the contour length, but — in
view of the original tube picture of Doi and Edwards, one
may wish to fix the contour length as an independent para-
meter of the projection. This can be achieved, e.g. by further
introducing a Maxwell Daemon (with fixed strength accord-
ing to a given temperature) pulling at the ends of the PP in
direction of the final segments, while preserving the contour
length by adjusting {. By means of our treatment of the
continuous PP it was shown that these segments are parallel
to each other, such that a Maxwell daemon would not tend
to rotate the chain, but stretch out the segments close to the
ends of the PP. Of course, since the system of equations for
the contour of the PP becomes non-linear in that case, the
computational effort strongly increases (in fact it increases
linearly with temperature).

The proposed (linear) projection to a PP is easily
implemented such that it scales linearly with the number
of beads, and therefore allows for its evaluation during a
Monte Carlo simulation. As shortly discussed above, there
is ongoing research in the direction of using information
about the conformation of PP (and other coarse-grained
quantities) for generalized canonical Monte Carlo simula-
tions [10].

There is another aspect to be shortly mentioned. In the
theory of anisotropic tube cross-sections [20,21] it had been
proposed that during deformation an initial circular tube
cross section may become elliptical, while the so called
stress-optic rule is preserved [20]. In Ref. [22] a dynamic
equation for a certain quantity Q had been proposed which
enabled to interpret the stress tensor proposed in Ref. [20],
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but the physical meaning of Q still remains open. All we
expect about Q is its equation of change

Q= —(1 — aqq)«x"-Q — Bk : uw)Q, (37)

with the following solution: Q(¢) o< E-Q, where Q, = Q(0)
and a proportionality coefficient due to

Ql(1) = OF[E-Qo|' ™ *[E-u| %, (38)

since Q = —Qk : [Buu + (1 — a)qq]. Here, a and B are
yet unknown coefficients of the anisotropic tube model, k =
(VV)T denotes deformation rate tensor, Q = |Q|, q = Q/Q,
and E=E@r) = exp(—KTt). From the proportionality
between Q and E-Q, follows directly, that the inner product
u-Q is conserved, as long as u denotes a segment which is
pseudo-affinely deformed, i.e. u(r) = E-uy/|E-u,| with the
finite strain tensor E = exp(tk) = (1 + ¢k + ---). For shear
flow, we simply have: El|ge,r = (1 + tk). Our hope is to
extract the coefficients «, B by using the definition of a
PP, because the model equations for anisotropic tubes
were considered to be applicable for quantities which repre-
sent atomistic chains on a coarse-grained level with speci-
fied contour length. In order to estimate the coefficients a, 8
of the model, we need to investigate the convective motion
of an underlying atomistic chain, which allows to extract u
(tangential to the PP) and Q (for example, as defined in Eq.
(5)) for given (small) deformation «t. The described proce-
dure allows to extract arbitrary ensemble averages which
involve contour and tube vectors. These averages have to
be compared with the ones predicted in connection with
Eq. (37). In order to illustrate the procedure, let us write
down a sample relationship between ensemble averages,
derived from the corresponding convective part of the diffu-
sion equation

d
7(2u0) = ~[K:(Q10,) + (Qu 0K,

~ 20,0,(aqq — Buw)) : k]. (39)

It is visible that the tube cross section is always circular
for « = 1, B =0, and it will be interesting to analyze these

parameters as a function of our model parameter { in order
to see if the ratio between second and first normal stress
difference, extensively discussed [5-7,14,17,20,21,23] —
and predicted to behave as Y,/¥, = —2/7[(1 + B+
512a)/(1 + a + B)] — depends on £, and if experimentally
measured values W,/V¥, = —1/4 can be interpreted by the
help of the hereby introduced PP.
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